

ATCS System and Train Control Upgrade Program

Dan Howard Project Manager

Engineering, Maintenance, and Safety Committee

November 28, 2018

Presentation Outline

- SFMTA Overview
- What is Train Control?
- ATCS System Overview
- Current Challenges
- Roadmap for the Future

SFMTA Overview

- Over 73,000 daily boardings
- 71.5 Miles of track (5.8 Miles in tunnel)
- 9 Subway stations; 24 Surface stations
- 87 Surface stops
- 2 LRV Yards

What is Train Control?

Primarily, train control is a **safety system** which is designed to prevent train-to-train collisions.

Generally, train control systems do not address the risk of collision between trains and other vehicles, bicycles, or pedestrians. These capabilities are currently being researched.

What is Train Control? (cont)

Secondarily, more modern train control systems can be used to manage rail service, giving operations staff the tools to monitor and adjust trains' speeds and dwell times to ensure the trains stay on schedule and maintain consistent headways.

What is Train Control? (cont)

Generally, there are two types of train control:

Existing Signaling Systems

- Above Ground
 - Line of sight manual operation with Transit Signals
 - VETAG for Train Operator switch position request
 - VETAG for Traffic Signal interface
 - VPI and relay based interlockings
- Market St. and new Central Subways
 - Thales Seltrac IS: loop based, with ATO
 - Secondary Train Detection using Axle Counter Blocks

A Surface Interlocking (3rd & 25th)

ATCS System Overview

VCC – Vital Control Computer

THU 08/07/97		VCC-CCO(Rel1.30)										18:22:22	
Authority	System												F1=Help
pbasgsIr.c	153												
M1.CPU1: 13	:53:09		C4	C6	C8	D2	D4	D6	D8	D10	D12	V2	V4
pbasgsIr.c	184												
M1.CPU1: 13	:53:09	STA	UA	U1	DI	DI	DI	U3	U5	U2	DI	U5	U9
pbasgsIr.c	303												
M1.CPU1: 13	:53:09	RES											
pbasgslr.c	363												
M1.CPU1: 13	:53:10	3:10 SIGNAL STATUS/RESERVATION											
pbasgslr.c	153												
M1.CPU1: 13	:53:10		V8	V12	V14	E2	E4	E6	E8	Т2	Τ4	Т6	Т8
pbasgslr.c	184												
M1.CPU1: 13	:53:10	STA	DI	U1	DI	DI							
pbasgslr.c	303												
M1.CPU1: 13	:53:10	RES											
pbasgslr.c	363												
M1.CPU1: 13	:53:12	2 SIGNAL STATUS/RESERVATION											
pbasgsir.c	153												
M1.CPU1: 13	:53:12		T10	T12	T14	T16	T20	T22	T24	T32	T18		
pbasgslr.c	184												
M1.CPU1: 13	:53:12	STA	DI										
pbasgslr.c	303												
M1.CPU1: 13	:53:12	RES											
pbasgslr.c	363												

ATCS System Overview

Station Controllers

ATCS System Overview

Wayside Equipment

ATCS System Overview

Carborne Equipment (VOBC)

ATCS System Overview

SMC – System Management Center

ATCS System Overview

Current Challenges

Geography

Portal Delays

Communication Issues

Breakdowns

Subway Congestion

Surface Variability / Turnbacks

Roadmap for the Future

- Technology Upgrades
- System Expansion
- New Capabilities

Technology Upgrades

- Replace loop cable with wireless
- New onboard computers
- New central computers
- New axle counters / secondary detection

Would address: System Failures Portal Delays

Communication Issues

System Expansion

Expanding the system to the surface would eliminate some key geographic issues, specifically

Portal Delays: Reduced by the trains staying within the system

Communication Issues & Breakdowns: Reduced by the trains entering at yards, where issues can be addressed.

Subway Congestion, Surface Variability, and Turnbacks: Controllers would be able to 'see' trains in the entire system, allowing them better opportunity

Connection to Traffic Signals

New Capabilities

- In-cab signaling
- Coordination with traffic signals
- Enforcement of signal violations
- Automatic Fault Monitoring
- Adaptive headway management
- Reverse running and special events

Questions?

